clc close all clear % All data for Piper Cherokee PA-28-180 h = 1200; V = 50; S = 15; m = 1090; Ixx = 1300; Izz = 1400; Ixz = 0; Iyy = 1700; CL0 = 0.543; CD0 = 0.0615; b = 9.11; cbar = 1.3; Ue = V; g = 9.80665; Xu = -0.06728;Zu = -0.396;Mu = 0.0; Xw = 0.02323;Zw = -1.729;Mw = -0.2772; Xq = 0.0;Zq = -1.6804;Mq = -2.207; Mdw = -0.0197;Zde = -17.01;Mde = -44.71; Yv = -0.1444;Lv = -0.1166;Nv = 0.174; Lp = -2.283;Np = -1.732; Lr = 1.053;Nr = -1.029; Ydr = 2.113;Ldr = 0.6133;Ndr = -6.583; Lda = 3.101; Nda = 0.0; % Determine the M* derivatives (Theta_e = 0) Mu_star = Mu + Mdw*Zu; Mw_star = Mw + Mdw*Zw; Mq_star = Mq + Mdw*Ue; Mth_star = 0; Mde_star = Mde + Mdw*Zde; % Create the system stability matrix A = [Xu Xw 0 -g; ... Zu Zw Ue 0; ... Mu_star Mw_star Mq_star Mth_star; ... 0 0 1 0]; % Make the input matrix, for good measure B = [0 Zde Mde_star 0]'; % Determine the eigenvalues numerically [V,D] = eig(A); disp(diag(D))